Druckwasserreaktor

Aufbau eines Kernkraftwerks mit Druckwasserreaktor, sichtbar der Primärkreis (rot im Containment), der Sekundärkreis ins Maschinenhaus und der Tertiärkreis zum Fluss und Kühlturm

Der Druckwasserreaktor (DWR; englisch pressurized water reactor, PWR) ist ein Kernreaktor-Typ, bei dem Wasser als Moderator und Kühlmittel dient. Der Betriebsdruck des Wassers wird anders als beim Siedewasserreaktor so hoch gewählt, dass es bei der vorgesehenen Betriebstemperatur nicht siedet.[1] Die Brennstäbe sind daher gleichmäßig benetzt, die Wärmeverteilung an ihrer Oberfläche ist ausgeglichen, und die Dampfphase mit ihrer besonderen Korrosionswirkung entfällt. Die gleichmäßige Wärmeverteilung bewirkt ein ruhiges Regelverhalten bei guter Ausnutzung der freiwerdenden Energie.

Das im Reaktorkern erhitzte Wasser (Primärkreislauf) gibt in einem Dampferzeuger seine Wärme an einen getrennten Wasser-Dampf-Kreislauf ab, den Sekundärkreislauf. Der Sekundärkreislauf ist frei von Radioaktivität aus Abrieb und Korrosionsprodukten, was z. B. die Wartung der Dampfturbine wesentlich erleichtert.

Meist wird leichtes Wasser (H2O) als Kühlmedium für die Brennstäbe, also als Transportmedium für die gewonnene Wärmeenergie verwendet. Diese Reaktoren gehören daher zu den Leichtwasserreaktoren. Weltweit gibt es nach Angaben der Internationalen Atomenergie-Organisation rund 300 (von 409) dieser Reaktoren bzw. Kraftwerke (Stand 2023).[2] Die Verwendung von schwerem Wasser (D2O) ist auch möglich, wird aber nur bei etwa 10 Prozent aller Reaktoren weltweit eingesetzt (siehe Schwerwasserreaktor). Insgesamt sind Druckwasserreaktoren weltweit der häufigste Reaktortyp; sie haben einen Anteil von über 2/3 an der gesamten nuklearen Stromerzeugung.[2]

  1. Das Phasendiagramm von Wasser ist im unteren Teil des folgenden Bildes dargestellt, woraus sich aus der Linie zwischen Tripelpunkt und kritischem Punkt der zur Betriebstemperatur gehörige, viel kleinere Siededruck ergibt. Siehe Phasendiagramme.svg. Der Unterschied zwischen Druckwasser- und Siedewasser-Reaktor gibt ein Beispiel für die sog. Gibbssche Phasenregel: Beim Druckwasser-Reaktor beträgt die Zahl der Freiheitsgrade f=2; Betriebsdruck und Betriebstemperatur können unabhängig voneinander festgelegt werden und liegen ganz im Flüssigkeitsbereich des Phasendiagrammes. Dagegen legen sich beim Siedewasser-Reaktor der Siededruck und die Siedetemperatur gegenseitig fest, und der Betrieb bewegt sich genau auf der oben angegebenen Grenzlinie zwischen der Flüssigkeits- und der Dampf-Phase. In diesem Fall ist f=1.
  2. a b PRIS - Reactor status reports - In Operation & Suspended Operation - By Type. IAEA, abgerufen am 19. Mai 2023 (englisch).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne