Data assimilation

Data assimilation is a mathematical discipline that seeks to optimally combine theory (usually in the form of a numerical model) with observations. There may be a number of different goals sought – for example, to determine the optimal state estimate of a system, to determine initial conditions for a numerical forecast model, to interpolate sparse observation data using (e.g. physical) knowledge of the system being observed, to set numerical parameters based on training a model from observed data. Depending on the goal, different solution methods may be used. Data assimilation is distinguished from other forms of machine learning, image analysis, and statistical methods in that it utilizes a dynamical model of the system being analyzed.

Data assimilation initially developed in the field of numerical weather prediction. Numerical weather prediction models are equations describing the dynamic behavior of the atmosphere, typically coded into a computer program. In order to use these models to make forecasts, initial conditions are needed for the model that closely resemble the current state of the atmosphere. Simply inserting point-wise measurements into the numerical models did not provide a satisfactory solution. Real world measurements contain errors both due to the quality of the instrument and how accurately the position of the measurement is known. These errors can cause instabilities in the models that eliminate any level of skill in a forecast. Thus, more sophisticated methods were needed in order to initialize a model using all available data while making sure to maintain stability in the numerical model. Such data typically includes the measurements as well as a previous forecast valid at the same time the measurements are made. If applied iteratively, this process begins to accumulate information from past observations into all subsequent forecasts.

Because data assimilation developed out of the field of numerical weather prediction, it initially gained popularity amongst the geosciences. In fact, one of the most cited publication in all of the geosciences is an application of data assimilation to reconstruct the observed history of the atmosphere.[1]

  1. ^ Kalnay, Eugenia; and coauthors (1996). "The NCEP/NCAR 40-Year Reanalysis Project". Bulletin of the American Meteorological Society. 77 (March): 437–471. Bibcode:1996BAMS...77..437K. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. ISSN 1520-0477. S2CID 124135431.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne