Field flow fractionation

Flow field-flow fractionation (AF4) channel cross section, where the velocity of laminar flow within the channel is not uniform. The fluid travels in a parabolic pattern with the velocity of the flow, increasing with the distance from the walls up towards the centre of the channel. Separation takes place close to the accumulation (bottom) wall of the channel

Field-flow fractionation, abbreviated FFF,[1] is a separation technique invented by J. Calvin Giddings. The technique is based on separation of colloidal or high molecular weight substances in liquid solutions, flowing through the separation platform, which does not have a stationary phase. It is similar to liquid chromatography, as it works on dilute solutions or suspensions of the solute, carried by a flowing eluent. Separation is achieved by applying a field (hydraulic, centrifugal,[2] thermal,[3] electric,[4] magnetic,[5] gravitational, ...) or cross-flow, perpendicular to the direction of transport of the sample, which is pumped through a long and narrow laminar channel. The field exerts a force on the sample components, concentrating them towards one of the channel walls, which is called accumulation wall.[6] The force interacts with a property of the sample, thereby the separation occurs, in other words, the components show differing "mobilities" under the force exerted by the crossing field. As an example, for the hydraulic, or cross-flow FFF method, the property driving separation is the translational diffusion coefficient or the hydrodynamic size. For a thermal field (heating one wall and cooling the other), it is the ratio of the thermal and the translational diffusion coefficient.

  1. ^ Giddings, J. Calvin; Yang, Frank J. F.; Myers, Marcus N. (24 September 1976). "Flow-Field-Flow Fractionation: A Versatile New Separation Method". Science. 193 (4259): 1244–1245. doi:10.1126/science.959835. ISSN 0036-8075. PMID 959835.
  2. ^ Yang, Feng-Shyang; Caldwell, Karin D; Myers, Marcus N; Giddings, J.Calvin (May 1983). "Colloid characterization by sedimentation field-flow fractionation. III. Emulsions". Journal of Colloid and Interface Science. 93 (1): 115–125. Bibcode:1983JCIS...93..115Y. doi:10.1016/0021-9797(83)90391-0.
  3. ^ Giddings, J. Calvin.; Yoon, Young Hee.; Myers, Marcus N. (1 January 1975). "Evaluation and comparison of gel permeation chromatography and thermal field-flow fractionation for polymer separations". Analytical Chemistry. 47 (1): 126–131. doi:10.1021/ac60351a035. ISSN 0003-2700.
  4. ^ Tasci, Tonguc O.; Johnson, William P.; Fernandez, Diego P.; Manangon, Eliana; Gale, Bruce K. (December 2015). "Particle Based Modeling of Electrical Field Flow Fractionation Systems". Chromatography. 2 (4): 594–610. doi:10.3390/chromatography2040594. ISSN 2227-9075.
  5. ^ Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej (5 October 2009). "Magnetic Nanoparticle Drug Carriers and Their Study by Quadrupole Magnetic Field-Flow Fractionation". Molecular Pharmaceutics. 6 (5): 1290–1306. doi:10.1021/mp900018v. ISSN 1543-8384. PMC 2757515. PMID 19591456.
  6. ^ Williams, P. Stephen; Moon, Myeong Hee; Giddings, J. Calvin (10 August 1996). "Influence of accumulation wall and carrier solution composition on lift force in sedimentation/steric field-flow fractionation". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 113 (3): 215–228. doi:10.1016/0927-7757(96)03669-2. ISSN 0927-7757.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne