Gene knock-in

In molecular cloning and biology, a gene knock-in (abbreviation: KI) refers to a genetic engineering method that involves the one-for-one substitution of DNA sequence information in a genetic locus or the insertion of sequence information not found within the locus.[1] Typically, this is done in mice since the technology for this process is more refined and there is a high degree of shared sequence complexity between mice and humans.[2] The difference between knock-in technology and traditional transgenic techniques is that a knock-in involves a gene inserted into a specific locus, and is thus a "targeted" insertion. It is the opposite of gene knockout.

A common use of knock-in technology is for the creation of disease models. It is a technique by which scientific investigators may study the function of the regulatory machinery (e.g. promoters) that governs the expression of the natural gene being replaced. This is accomplished by observing the new phenotype of the organism in question. The BACs and YACs are used in this case so that large fragments can be transferred.

  1. ^ Gibson, Greg (2009). A Primer Of Genome Science 3rd ed. Sunderland, Massachusetts: Sinauer. pp. 301–302. ISBN 978-0-87893-236-8.
  2. ^ Mouse Genome Sequencing Consortium; Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel (2002-12-05). "Initial sequencing and comparative analysis of the mouse genome". Nature. 420 (6915): 520–562. Bibcode:2002Natur.420..520W. doi:10.1038/nature01262. ISSN 0028-0836. PMID 12466850.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne