Geostrophic wind

In atmospheric science, geostrophic flow (/ˌəˈstrɒfɪk, ˌ-, -ˈstr-/[1][2][3]) is the theoretical wind that would result from an exact balance between the Coriolis force and the pressure gradient force. This condition is called geostrophic equilibrium or geostrophic balance (also known as geostrophy). The geostrophic wind is directed parallel to isobars (lines of constant pressure at a given height). This balance seldom holds exactly in nature. The true wind almost always differs from the geostrophic wind due to other forces such as friction from the ground. Thus, the actual wind would equal the geostrophic wind only if there were no friction (e.g. above the atmospheric boundary layer) and the isobars were perfectly straight. Despite this, much of the atmosphere outside the tropics is close to geostrophic flow much of the time and it is a valuable first approximation. Geostrophic flow in air or water is a zero-frequency inertial wave.

  1. ^ "geostrophic". Dictionary.com Unabridged (Online). n.d. Retrieved 2016-01-22.
  2. ^ "geostrophic". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 2021-12-23.
  3. ^ "geostrophic". Merriam-Webster.com Dictionary. Retrieved 2016-01-22.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne