Inner product space

Geometric interpretation of the angle between two vectors defined using an inner product
Scalar product spaces, inner product spaces, Hermitian product spaces.
Scalar product spaces, over any field, have "scalar products" that are symmetrical and linear in the first argument. Hermitian product spaces are restricted to the field of complex numbers and have "Hermitian products" that are conjugate-symmetrical and linear in the first argument. Inner product spaces may be defined over any field, having "inner products" that are linear in the first argument, conjugate-symmetrical, and positive-definite. Unlike inner products, scalar products and Hermitian products need not be positive-definite.

In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space[1][2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.[3]

An inner product naturally induces an associated norm, (denoted and in the picture); so, every inner product space is a normed vector space. If this normed space is also complete (that is, a Banach space) then the inner product space is a Hilbert space.[1] If an inner product space H is not a Hilbert space, it can be extended by completion to a Hilbert space This means that is a linear subspace of the inner product of is the restriction of that of and is dense in for the topology defined by the norm.[1][4]

  1. ^ a b c Trèves 2006, pp. 112–125.
  2. ^ Schaefer & Wolff 1999, pp. 40–45.
  3. ^ Moore, Gregory H. (1995). "The axiomatization of linear algebra: 1875-1940". Historia Mathematica. 22 (3): 262–303. doi:10.1006/hmat.1995.1025.
  4. ^ Schaefer & Wolff 1999, pp. 36–72.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne