Step-growth polymerization

A generic representation of a step-growth polymerization. (Single white dots represent monomers and black chains represent oligomers and polymers)[1]
Comparison of molecular weight vs conversion plot between step-growth and living chain-growth polymerization

In polymer chemistry, step-growth polymerization refers to a type of polymerization mechanism in which bi-functional or multifunctional monomers react to form first dimers, then trimers, longer oligomers and eventually long chain polymers. Many naturally-occurring and some synthetic polymers are produced by step-growth polymerization, e.g. polyesters, polyamides, polyurethanes, etc. Due to the nature of the polymerization mechanism, a high extent of reaction is required to achieve high molecular weight. The easiest way to visualize the mechanism of a step-growth polymerization is a group of people reaching out to hold their hands to form a human chain—each person has two hands (= reactive sites). There also is the possibility to have more than two reactive sites on a monomer: In this case branched polymers production take place.

IUPAC has deprecated the term step-growth polymerization, and recommends use of the terms polyaddition (when the propagation steps are addition reactions and molecules are not evolved during these steps) and polycondensation (when the propagation steps are condensation reactions and molecules are evolved during these steps).

  1. ^ Cite error: The named reference Cowie was invoked but never defined (see the help page).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne