Structural stability

In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C1-small perturbations).

Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself. Variants of this notion apply to systems of ordinary differential equations, vector fields on smooth manifolds and flows generated by them, and diffeomorphisms.

Structurally stable systems were introduced by Aleksandr Andronov and Lev Pontryagin in 1937 under the name "systèmes grossiers", or rough systems. They announced a characterization of rough systems in the plane, the Andronov–Pontryagin criterion. In this case, structurally stable systems are typical, they form an open dense set in the space of all systems endowed with appropriate topology. In higher dimensions, this is no longer true, indicating that typical dynamics can be very complex (cf. strange attractor). An important class of structurally stable systems in arbitrary dimensions is given by Anosov diffeomorphisms and flows. During the late 1950s and the early 1960s, Maurício Peixoto and Marília Chaves Peixoto, motivated by the work of Andronov and Pontryagin, developed and proved Peixoto's theorem, the first global characterization of structural stability.[1]

  1. ^ Rahman, Aminur; Blackmore, D. (2023). "The One-Dimensional Version of Peixoto's Structural Stability Theorem: A Calculus-Based Proof". SIAM Review. 65 (3): 869–886. arXiv:2302.04941. doi:10.1137/21M1426572. ISSN 0036-1445.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne