Wavenumber

Diagram illustrating the relationship between the wavenumber and the other properties of harmonic waves.

In the physical sciences, the wavenumber (or wave number), also known as repetency,[1] is the spatial frequency of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber).[2][3][4] It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time (ordinary frequency) or radians per unit time (angular frequency).

In multidimensional systems, the wavenumber is the magnitude of the wave vector. The space of wave vectors is called reciprocal space. Wave numbers and wave vectors play an essential role in optics and the physics of wave scattering, such as X-ray diffraction, neutron diffraction, electron diffraction, and elementary particle physics. For quantum mechanical waves, the wavenumber multiplied by the reduced Planck constant is the canonical momentum.

Wavenumber can be used to specify quantities other than spatial frequency. For example, in optical spectroscopy, it is often used as a unit of temporal frequency assuming a certain speed of light.

  1. ^ ISO 80000-3:2019 Quantities and units – Part 3: Space and time.
  2. ^ Rodrigues, A.; Sardinha, R.A.; Pita, G. (2021). Fundamental Principles of Environmental Physics. Springer International Publishing. p. 73. ISBN 978-3-030-69025-0. Retrieved 2022-12-04.
  3. ^ Solimini, D. (2016). Understanding Earth Observation: The Electromagnetic Foundation of Remote Sensing. Remote Sensing and Digital Image Processing. Springer International Publishing. p. 679. ISBN 978-3-319-25633-7. Retrieved 2022-12-04.
  4. ^ Robinson, E.A.; Treitel, S. (2008). Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing. Geophysical references. Society of Exploration Geophysicists. p. 9. ISBN 978-1-56080-148-1. Retrieved 2022-12-04.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne