Rayon atomique

Diagramme montrant le rayon atomique de deux atomes d’hydrogène.

Le rayon atomique d'un élément chimique est une mesure de la taille de ses atomes, d'habitude la distance moyenne entre le noyau et la frontière du nuage électronique qui l'entoure. Comme cette frontière n'est pas une entité physique bien définie, il y a plusieurs définitions non équivalentes du rayon atomique.

Selon la définition, le terme peut s'appliquer seulement sur des atomes isolés, ou aussi sur des atomes dans de la matière condensée, une liaison covalente dans une molécule ou dans des états ionisés et excités. Sa valeur peut être obtenue par des mesures expérimentales ou calculés à partir de modèles théoriques. Avec certaines définitions, la valeur du rayon atomique peut dépendre de l'état atomique et de son environnement[1].

Les atomes peuvent souvent être modélisés comme étant des sphères. C'est une approximation un peu grossière, mais qui peut fournir des explications et des prédictions pour de nombreux phénomènes comme la densité des fluides et des solides, la diffusion de fluides dans un tamis moléculaire, l'arrangement d'atomes et d'ions dans les cristaux et la taille et forme des molécules.

Néanmoins le concept de rayon atomique est difficile à définir parce que les électrons n'ont pas d'orbite bien définie, ni de taille précise. Leur position doit ainsi être décrite à l'aide de probabilités de distribution qui diminuent graduellement en s'éloignant du noyau, sans s'annuler de manière brusque. De plus dans la matière condensée et les molécules, les nuages électroniques des atomes se chevauchent souvent et certains électrons peuvent être délocalisées sur deux atomes ou plus.

Malgré ces difficultés conceptuelles, la plupart des définitions, pour des atomes isolés, donnent un rayon compris entre 30 et 300 pm (de 0,3 à 3 ångströms) Le rayon atomique est donc plus de 100 000 fois plus grand que le noyau atomique mais inférieur à un millième de la longueur d'onde du visible[2][source insuffisante].

Les rayons atomiques varient de manière prévisible lorsqu'on se déplace dans le tableau périodique. Par exemple, les rayons diminuent en général le long d'une période (rangée) de la table depuis les alcalins jusqu'aux gaz nobles; et augmentent lorsqu'on descend une colonne.

  1. (en) F. Albert Cotton et Geoffrey Wilkinson, Advanced inorganic chemistry, New York, Wiley, , 1455 p. (ISBN 978-0-471-84997-1, OCLC 16580057), p. 1385.
  2. (en) Jean-Louis Basdevant, James Rich & Michel Spiro, Fundamentals in Nuclear Physics : From Nuclear Structure to Cosmology, New York, Springer, , 515 p. (ISBN 978-0-387-01672-6, LCCN 2004056544, lire en ligne), p. 13 (fig 1.1).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne