Uranium

92U
Uranium
Uranium yang diperkaya tinggi
Garis spektrum uranium
Sifat umum
Pengucapan/uranium/[1]
Penampilanmetalik abu-abu keperakan; teroksidasi menjadi hitam ketika terpapar dengan udara
Uranium dalam tabel periodik
Perbesar gambar

92U
Hidrogen Helium
Lithium Berilium Boron Karbon Nitrogen Oksigen Fluor Neon
Natrium Magnesium Aluminium Silikon Fosfor Sulfur Clor Argon
Potasium Kalsium Skandium Titanium Vanadium Chromium Mangan Besi Cobalt Nikel Tembaga Seng Gallium Germanium Arsen Selen Bromin Kripton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Nd

U

(Uqh)
protaktiniumuraniumneptunium
Lihat bagan navigasi yang diperbesar
Nomor atom (Z)92
Golongangolongan n/a
Periodeperiode 7
Blokblok-f
Kategori unsur  aktinida
Berat atom standar (Ar)
  • 238,02891±0,00003
  • 238,03±0,01 (diringkas)
Konfigurasi elektron[Rn] 5f3 6d1 7s2
Elektron per kelopak2, 8, 18, 32, 21, 9, 2
Sifat fisik
Fase pada STS (0 °C dan 101,325 kPa)padat
Titik lebur1405,3 K ​(1132,2 °C, ​2070 °F)
Titik didih4404 K ​(4131 °C, ​7468 °F)
Kepadatan mendekati s.k.19,1 g/cm3
saat cair, pada t.l.17,3 g/cm3
Kalor peleburan9,14 kJ/mol
Kalor penguapan417,1 kJ/mol
Kapasitas kalor molar27,665 J/(mol·K)
Tekanan uap
P (Pa) 1 10 100 1 k 10 k 100 k
pada T (K) 2325 2564 2859 3234 3727 4402
Sifat atom
Bilangan oksidasi+1, +2, +3,[2] +4, +5, +6 (oksida amfoter)
ElektronegativitasSkala Pauling: 1,38
Energi ionisasike-1: 597,6 kJ/mol
ke-2: 1420 kJ/mol
Jari-jari atomempiris: 156 pm
Jari-jari kovalen196±7 pm
Jari-jari van der Waals186 pm
Lain-lain
Kelimpahan alamiprimordial
Struktur kristalortorombus
Struktur kristal Orthorhombic untuk uranium
Kecepatan suara batang ringan3155 m/s (suhu 20 °C)
Ekspansi kalor13,9 µm/(m·K) (suhu 25 °C)
Konduktivitas termal27,5 W/(m·K)
Resistivitas listrik0,280 µΩ·m (suhu 0 °C)
Arah magnetparamagnetik
Modulus Young208 GPa
Modulus Shear111 GPa
Modulus curah100 GPa
Rasio Poisson0,23
Skala Vickers1960–2500 MPa
Skala Brinell2350–3850 MPa
Nomor CAS7440-61-1
Sejarah
Penamaandari planet Uranus, ia sendiri dinamai dari dewa langit Yunani Uranus
PenemuanMartin H. Klaproth (1789)
Isolasi pertamaE. Péligot (1841)
Isotop uranium yang utama
Iso­top Kelim­pahan Waktu paruh (t1/2) Mode peluruhan Pro­duk
232U sintetis 68,9 thn SF
α 228Th
233U renik 1,592×105 thn SF
α 229Th
234U 0,005% 2,455×105 thn SF
α 230Th
235U 0,720% 7,04×108 thn SF
α 231Th
236U renik 2,342×107 thn SF
α 232Th
238U 99,274% 4,468×109 thn α 234Th
SF
ββ 238Pu
| referensi | di Wikidata

Uranium adalah sebuah unsur kimia dengan lambang U dan nomor atom 92. Ia merupakan logam berwarna abu-abu keperakan dalam deret aktinida tabel periodik. Sebuah atom uranium memiliki 92 proton dan 92 elektron, dimana 6 di antaranya adalah elektron valensi. Uranium meluruh secara radioaktif dengan memancarkan sebuah partikel alfa. Waktu paruh peluruhan ini bervariasi antara 159.200 dan 4,5 miliar tahun untuk isotop yang berbeda, menjadikannya berguna untuk menentukan usia Bumi. Isotop paling umum dalam uranium alami adalah uranium-238 (yang memiliki 146 neutron dan menyumbang lebih dari 99% uranium di Bumi) dan uranium-235 (yang memiliki 143 neutron). Uranium memiliki berat atom tertinggi dari unsur-unsur yang terjadi secara primordial. Kepadatannya sekitar 70% lebih tinggi dari timbal, dan sedikit lebih rendah dari emas atau wolfram. Ia terjadi secara alami dalam konsentrasi rendah, yaitu beberapa bagian per juta di tanah, batu dan air, dan ia diekstraksi secara komersial dari mineral yang mengandung uranium seperti uraninit.[3]

Banyak penggunaan uranium kontemporer mengeksploitasi sifat nuklirnya yang unik. Uranium-235 adalah satu-satunya isotop fisil alami, yang membuatnya banyak digunakan pada pembangkit listrik tenaga nuklir dan senjata nuklir. Namun, karena konsentrasi kecil yang ditemukan di alam, uranium perlu mengalami pengayaan agar uranium-235 dapat cukup. Uranium-238 dapat difisi oleh neutron cepat, dan ia bersifat subur, artinya ia dapat ditransmutasikan menjadi plutonium-239 yang fisil dalam reaktor nuklir. Isotop fisil lainnya, uranium-233, dapat diproduksi dari torium alami dan dipelajari untuk penggunaan industri di masa depan dalam teknologi nuklir. Uranium-238 memiliki kemungkinan kecil untuk mengalami fisi spontan atau bahkan fisi terinduksi dengan neutron cepat; uranium-235, dan pada tingkat yang lebih rendah uranium-233, memiliki penampang lintang fisi yang jauh lebih tinggi untuk neutron lambat. Dalam konsentrasi yang cukup, isotop-isotop ini mempertahankan reaksi rantai nuklir yang berkelanjutan. Hal ini menghasilkan panas dalam reaktor tenaga nuklir, dan menghasilkan bahan fisil untuk senjata nuklir. Uranium terdeplesi (238U) digunakan dalam penetrator energi kinetik dan pelapisan pelindung.[4][5]

Penemuan uranium pada tahun 1789 dalam mineral uraninit dikreditkan pada Martin Heinrich Klaproth, yang menamai unsur baru tersebut dengan nama planet Uranus yang saat itu baru ditemukan. Eugène-Melchior Péligot adalah orang pertama yang mengisolasi logam tersebut dan sifat radioaktifnya ditemukan pada tahun 1896 oleh Henri Becquerel. Penelitian yang dilakukan oleh Otto Hahn, Lise Meitner, Enrico Fermi dan lainnya, seperti J. Robert Oppenheimer mulai tahun 1934 menyebabkan penggunaannya mulai meningkat, seperti sebagai bahan bakar dalam industri tenaga nuklir dan Little Boy, senjata nuklir pertama yang digunakan dalam perang. Perlombaan senjata berikutnya selama Perang Dingin antara Amerika Serikat dan Uni Soviet menghasilkan puluhan ribu senjata nuklir yang menggunakan logam uranium dan plutonium-239 yang diturunkan dari uranium. Pembongkaran senjata ini dan fasilitas nuklir terkait dilakukan dalam berbagai program pelucutan senjata nuklir dan menelan biaya miliaran dolar. Uranium tingkat senjata yang diperoleh dari senjata nuklir kemudian diencerkan dengan uranium-238 dan digunakan kembali sebagai bahan bakar reaktor nuklir. Pengembangan dan penyebaran reaktor nuklir ini berlanjut di basis global karena merupakan sumber energi bebas CO2 yang kuat. Bahan bakar nuklir bekas membentuk limbah radioaktif, yang sebagian besar terdiri dari uranium-238 dan menimbulkan ancaman kesehatan dan dampak lingkungan yang signifikan.

  1. ^ (Indonesia) "Uranium". KBBI Daring. Diakses tanggal 17 Juli 2022. 
  2. ^ Morss, L.R.; Edelstein, N.M.; Fuger, J., ed. (2006). The Chemistry of the Actinide and Transactinide Elements (edisi ke-3rd). Netherlands: Springer. ISBN 978-9048131464. 
  3. ^ "Uranium". Encyclopaedia Britannica. Diakses tanggal 12 Juni 2023. 
  4. ^ Emsley 2001, hlm. 479.
  5. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Fink

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne