Mass in special relativity

The word "mass" has two meanings in special relativity: invariant mass (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy).

The term "relativistic mass" tends not to be used in particle and nuclear physics and is often avoided by writers on special relativity, in favor of referring to the body's relativistic energy.[1] In contrast, "invariant mass" is usually preferred over rest energy. The measurable inertia and the warping of spacetime by a body in a given frame of reference is determined by its relativistic mass, not merely its invariant mass. For example, photons have zero rest mass but contribute to the inertia (and weight in a gravitational field) of any system containing them.

The concept is generalized in mass in general relativity.

  1. ^ Roche, J (2005). "What is mass?" (PDF). European Journal of Physics. 26 (2): 225. Bibcode:2005EJPh...26..225R. doi:10.1088/0143-0807/26/2/002. S2CID 122254861.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne