Mathematics

Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory,[1] algebra,[2] geometry,[1] and analysis,[3] respectively. There is no general consensus among mathematicians about a common definition for their academic discipline.

Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature or—in modern mathematics—entities that are stipulated to have certain properties, called axioms. A proof consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, and—in case of abstraction from nature—some basic properties that are considered true starting points of the theory under consideration.[4]

Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science, and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent from any scientific experimentation. Some areas of mathematics, such as statistics and game theory, are developed in close correlation with their applications and are often grouped under applied mathematics. Other areas are developed independently from any application (and are therefore called pure mathematics), but often later find practical applications.[5][6]

Historically, the concept of a proof and its associated mathematical rigour first appeared in Greek mathematics, most notably in Euclid's Elements.[7] Since its beginning, mathematics was primarily divided into geometry and arithmetic (the manipulation of natural numbers and fractions), until the 16th and 17th centuries, when algebra[a] and infinitesimal calculus were introduced as new fields. Since then, the interaction between mathematical innovations and scientific discoveries has led to a correlated increase in the development of both.[8] At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the axiomatic method,[9] which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary Mathematics Subject Classification lists more than sixty first-level areas of mathematics.

  1. ^ a b "Mathematics (noun)". Oxford English Dictionary. Oxford University Press. Retrieved January 17, 2024. The science of space, number, quantity, and arrangement, whose methods involve logical reasoning and usually the use of symbolic notation, and which includes geometry, arithmetic, algebra, and analysis.
  2. ^ Kneebone, G. T. (1963). "Traditional Logic". Mathematical Logic and the Foundations of Mathematics: An Introductory Survey. D. Van Nostard Company. p. 4. LCCN 62019535. MR 0150021. OCLC 792731. S2CID 118005003. Mathematics ... is simply the study of abstract structures, or formal patterns of connectedness.
  3. ^ LaTorre, Donald R.; Kenelly, John W.; Reed, Iris B.; Carpenter, Laurel R.; Harris, Cynthia R.; Biggers, Sherry (2008). "Models and Functions". Calculus Concepts: An Applied Approach to the Mathematics of Change (4th ed.). Houghton Mifflin Company. p. 2. ISBN 978-0-618-78983-2. LCCN 2006935429. OCLC 125397884. Calculus is the study of change—how things change and how quickly they change.
  4. ^ Hipólito, Inês Viegas (August 9–15, 2015). "Abstract Cognition and the Nature of Mathematical Proof". In Kanzian, Christian; Mitterer, Josef; Neges, Katharina (eds.). Realismus – Relativismus – Konstruktivismus: Beiträge des 38. Internationalen Wittgenstein Symposiums [Realism – Relativism – Constructivism: Contributions of the 38th International Wittgenstein Symposium] (PDF) (in German and English). Vol. 23. Kirchberg am Wechsel, Austria: Austrian Ludwig Wittgenstein Society. pp. 132–134. ISSN 1022-3398. OCLC 236026294. Archived (PDF) from the original on November 7, 2022. Retrieved January 17, 2024. (at ResearchGate Open access icon Archived November 5, 2022, at the Wayback Machine)
  5. ^ Peterson 1988, p. 12.
  6. ^ Cite error: The named reference wigner1960 was invoked but never defined (see the help page).
  7. ^ Wise, David. "Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion". The University of Georgia. Archived from the original on June 1, 2019. Retrieved January 18, 2024.
  8. ^ Alexander, Amir (September 2011). "The Skeleton in the Closet: Should Historians of Science Care about the History of Mathematics?". Isis. 102 (3): 475–480. doi:10.1086/661620. ISSN 0021-1753. MR 2884913. PMID 22073771. S2CID 21629993.
  9. ^ Kleiner, Israel (December 1991). "Rigor and Proof in Mathematics: A Historical Perspective". Mathematics Magazine. Taylor & Francis, Ltd. 64 (5): 291–314. doi:10.1080/0025570X.1991.11977625. eISSN 1930-0980. ISSN 0025-570X. JSTOR 2690647. LCCN 47003192. MR 1141557. OCLC 1756877. S2CID 7787171.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne