Semi-empirical mass formula

In nuclear physics, the semi-empirical mass formula (SEMF) (sometimes also called the Weizsäcker formula, Bethe–Weizsäcker formula, or Bethe–Weizsäcker mass formula to distinguish it from the Bethe–Weizsäcker process) is used to approximate the mass of an atomic nucleus from its number of protons and neutrons. As the name suggests, it is based partly on theory and partly on empirical measurements. The formula represents the liquid-drop model proposed by George Gamow,[1] which can account for most of the terms in the formula and gives rough estimates for the values of the coefficients. It was first formulated in 1935 by German physicist Carl Friedrich von Weizsäcker,[2] and although refinements have been made to the coefficients over the years, the structure of the formula remains the same today.

The formula gives a good approximation for atomic masses and thereby other effects. However, it fails to explain the existence of lines of greater binding energy at certain numbers of protons and neutrons. These numbers, known as magic numbers, are the foundation of the nuclear shell model.

  1. ^ Gamow, George (1930). "Mass Defect Curve and Nuclear Constitution". Proceedings of the Royal Society A. 126 (803): 632–644. Bibcode:1930RSPSA.126..632G. doi:10.1098/rspa.1930.0032. JSTOR 95297.
  2. ^ von Weizsäcker, C. F. (1935). "Zur Theorie der Kernmassen". Zeitschrift für Physik (in German). 96 (7–8): 431–458. Bibcode:1935ZPhy...96..431W. doi:10.1007/BF01337700. S2CID 118231854.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne