Strong interaction

An animation of color confinement, a property of the strong interaction. If energy is supplied to the quarks as shown, the gluon tube connecting quarks elongates until it reaches a point where it "snaps" and the energy added to the system results in the formation of a quark–antiquark pair. Thus single quarks are never seen in isolation.
An animation of the strong interaction between a proton and a neutron, mediated by pions. The colored small double circles inside are gluons.

In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is a fundamental interaction that confines quarks into protons, neutrons, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the nuclear force.

Most of the mass of a proton or neutron is the result of the strong interaction energy; the individual quarks provide only about 1% of the mass of a proton. At the range of 10−15 m (1 femtometer, slightly more than the radius of a nucleon), the strong force is approximately 100 times as strong as electromagnetism, 106 times as strong as the weak interaction, and 1038 times as strong as gravitation.[1]

In the context of atomic nuclei, the force binds protons and neutrons together to form a nucleus and is called the nuclear force (or residual strong force).[2] Because the force is mediated by massive, short lived mesons on this scale, the residual strong interaction obeys a distance-dependent behavior between nucleons that is quite different from when it is acting to bind quarks within hadrons. There are also differences in the binding energies of the nuclear force with regard to nuclear fusion vs nuclear fission. Nuclear fusion accounts for most energy production in the Sun and other stars. Nuclear fission allows for decay of radioactive elements and isotopes, although it is often mediated by the weak interaction. Artificially, the energy associated with the nuclear force is partially released in nuclear power and nuclear weapons, both in uranium or plutonium-based fission weapons and in fusion weapons like the hydrogen bomb.[3][4]

  1. ^ Relative strength of interaction varies with distance. See for instance Matt Strassler's essay, "The strength of the known forces".
  2. ^ Cite error: The named reference auto was invoked but never defined (see the help page).
  3. ^ Ragheb, Magdi. "Chapter 4 Nuclear Processes, The Strong Force" (PDF). University of Illinois. Archived from the original (PDF) on 2012-12-18. Retrieved 2023-10-03.
  4. ^ "Lesson 13: Binding energy and mass defect". Furry Elephant physics educational site. Archived from the original on 2023-05-28. Retrieved 2023-10-03.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne