Transactional interpretation

The transactional interpretation of quantum mechanics (TIQM) takes the wave function of the standard quantum formalism, and its complex conjugate, to be retarded (forward in time) and advanced (backward in time) waves that form a quantum interaction as a Wheeler–Feynman handshake or transaction. It was first proposed in 1986 by John G. Cramer, who argues that it helps in developing intuition for quantum processes. He also suggests that it avoids the philosophical problems with the Copenhagen interpretation and the role of the observer, and also resolves various quantum paradoxes.[1][2][3] TIQM formed a minor plot point in his science fiction novel Einstein's Bridge.

More recently, he has also argued TIQM to be consistent with the Afshar experiment, while claiming that the Copenhagen interpretation and the many-worlds interpretation are not.[4]

The existence of both advanced and retarded waves as admissible solutions to Maxwell's equations was explored in the Wheeler–Feynman absorber theory. Cramer revived their idea of two waves for his transactional interpretation of quantum theory. While the ordinary Schrödinger equation does not admit advanced solutions, its relativistic version does, and these advanced solutions are the ones used by TIQM.

In TIQM, the source emits a usual (retarded) wave forward in time, but it also emits an advanced wave backward in time; furthermore, the receiver, who is later in time, also emits an advanced wave backward in time and a retarded wave forward in time. A quantum event occurs when a "handshake" exchange of advanced and retarded waves triggers the formation of a transaction in which energy, momentum, angular momentum, etc. are transferred. The quantum mechanism behind transaction formation has been demonstrated explicitly for the case of a photon transfer between atoms in Sect. 5.4 of Carver Mead's book Collective Electrodynamics. In this interpretation, the collapse of the wavefunction does not happen at any specific point in time, but is "atemporal" and occurs along the whole transaction, and the emission/absorption process is time-symmetric. The waves are seen as physically real, rather than a mere mathematical device to record the observer's knowledge as in some other interpretations of quantum mechanics.[citation needed] Philosopher and writer Ruth Kastner argues that the waves exist as possibilities outside of physical spacetime and that therefore it is necessary to accept such possibilities as part of reality.[5]

Cramer has used TIQM in teaching quantum mechanics at the University of Washington in Seattle.

  1. ^ Cramer, John (July 2009). "Transactional Interpretation of Quantum Mechanics". In Daniel Greenberger; Klaus Hentschel; Friedel Weinert (eds.). Compendium of Quantum Physics. Springer. pp. 795–798. doi:10.1007/978-3-540-70626-7_223. ISBN 978-3-540-70622-9. Open access icon
  2. ^ Cramer, John G. (July 1986). "The Transactional Interpretation of Quantum Mechanics". Reviews of Modern Physics. 58 (3): 647–688. Bibcode:1986RvMP...58..647C. doi:10.1103/RevModPhys.58.647. Open access icon
  3. ^ Cramer, John G. (February 1988). "An Overview of the Transactional Interpretation" (PDF). International Journal of Theoretical Physics. 27 (2): 227–236. Bibcode:1988IJTP...27..227C. doi:10.1007/BF00670751. S2CID 18588747.
  4. ^ Cramer, John G. (December 2005). "A Farewell to Copenhagen?". Analog. The Alternate View. Dell Magazines.
  5. ^ George Musser and Ruth Kastner; "Can We Resolve Quantum Paradoxes by Stepping Out of Space and Time?", Scientific American blog, June 21, 2013.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne