Wheeler's delayed-choice experiment

John Wheeler, 1985

Wheeler's delayed-choice experiment describes a family of thought experiments in quantum physics proposed by John Archibald Wheeler, with the most prominent among them appearing in 1978 and 1984.[1] These experiments are attempts to decide whether light somehow "senses" the experimental apparatus in the double-slit experiment it travels through, adjusting its behavior to fit by assuming an appropriate determinate state, or whether light remains in an indeterminate state, exhibiting both wave-like and particle-like behavior until measured.[2]

The common intention of these several types of experiments is to first do something that, according to some hidden-variable models,[3] would make each photon "decide" whether it were going to behave as a particle or behave as a wave, and then, before the photon had time to reach the detection device, create another change in the system that would make it seem that the photon had "chosen" to behave in the opposite way. Some interpreters of these experiments contend that a photon either is a wave or is a particle, and that it cannot be both at the same time. Wheeler's intent was to investigate the time-related conditions under which a photon makes this transition between alleged states of being. His work has been productive of many revealing experiments.[4]

This line of experimentation proved very difficult to carry out when it was first conceived. Nevertheless, it has proven very valuable over the years since it has led researchers to provide "increasingly sophisticated demonstrations of the wave–particle duality of single quanta".[5][6] As one experimenter explains, "Wave and particle behavior can coexist simultaneously."[7]

  1. ^ Mathematical Foundations of Quantum Theory, edited by A. R. Marlow, Academic Press, 1978. P. 39 lists seven experiments: double slit, microscope, split beam, tilt-teeth, radiation pattern, one-photon polarization, and polarization of paired photons.
  2. ^ George Greenstein and Arthur Zajonc, The Quantum Challenge, p. 37f.
  3. ^ Qin, Wei; Miranowicz, Adam; Long, Guilu; You, J. Q.; Nori, Franco (December 2019). "Proposal to test quantum wave-particle superposition on massive mechanical resonators". npj Quantum Information. 5 (1): 58. arXiv:1807.03194. Bibcode:2019npjQI...5...58Q. doi:10.1038/s41534-019-0172-9. ISSN 2056-6387.
  4. ^ Ma, Xiao-song; Kofler, Johannes; Zeilinger, Anton (2016-03-03). "Delayed-choice gedanken experiments and their realizations". Reviews of Modern Physics. 88 (1): 015005. arXiv:1407.2930. doi:10.1103/RevModPhys.88.015005. ISSN 0034-6861. S2CID 34901303.
  5. ^ Ma, Xiao-Song; Kofler, Johannes; Qarry, Angie; Tetik, Nuray; Scheidl, Thomas; Ursin, Rupert; Ramelow, Sven; Herbst, Thomas; Ratschbacher, Lothar; Fedrizzi, Alessandro; Jennewein, Thomas; Zeilinger, Anton (2013). "Quantum erasure with causally disconnected choice". Proceedings of the National Academy of Sciences. 110 (4): 110–1226. arXiv:1206.6578. Bibcode:2013PNAS..110.1221M. doi:10.1073/pnas.1213201110. PMC 3557028. PMID 23288900.
  6. ^ Peruzzo, Alberto; Shadbolt, Peter; Brunner, Nicolas; Popescu, Sandu; O'Brien, Jeremy L (2012). "A Quantum Delayed-Choice Experiment". Science. 338 (6107): 634–637. arXiv:1205.4926. Bibcode:2012Sci...338..634P. doi:10.1126/science.1226719. PMID 23118183. S2CID 3725159. This experiment uses Bell inequalities to replace the delayed choice devices, but it achieves the same experimental purpose in an elegant and convincing way.
  7. ^ Kaiser, Florian; Coudreau, Thomas; Milman, Pérola; Ostrowsky, Daniel B.; Tanzilli, Sébastien (2012). "Entanglement-Enabled Delayed-Choice Experiment". Science. 338 (6107): 637–640. arXiv:1206.4348. Bibcode:2012Sci...338..637K. CiteSeerX 10.1.1.592.8022. doi:10.1126/science.1226755. PMID 23118184. S2CID 17859926.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne