Economies of scale

As quantity of production increases from Q to Q2, the average cost of each unit decreases from C to C1. LRAC is the long-run average cost.

In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, and are typically measured by the amount of output produced per unit of time. A decrease in cost per unit of output enables an increase in scale that is, increased production with lowered cost[1]. At the basis of economies of scale, there may be technical, statistical, organizational or related factors to the degree of market control.

Economies of scale arise in a variety of organizational and business situations and at various levels, such as a production, plant or an entire enterprise. When average costs start falling as output increases, then economies of scale occur. Some economies of scale, such as capital cost of manufacturing facilities and friction loss of transportation and industrial equipment, have a physical or engineering basis. The economic concept dates back to Adam Smith and the idea of obtaining larger production returns through the use of division of labor.[2] Diseconomies of scale are the opposite.

Economies of scale often have limits, such as passing the optimum design point where costs per additional unit begin to increase. Common limits include exceeding the nearby raw material supply, such as wood in the lumber, pulp and paper industry. A common limit for a low cost per unit weight commodities is saturating the regional market, thus having to ship products uneconomic distances. Other limits include using energy less efficiently or having a higher defect rate.

Large producers are usually efficient at long runs of a product grade (a commodity) and find it costly to switch grades frequently. They will, therefore, avoid specialty grades even though they have higher margins. Often smaller (usually older) manufacturing facilities remain viable by changing from commodity-grade production to specialty products.[3][a] Economies of scale must be distinguished from economies stemming from an increase in the production of a given plant. When a plant is used below its optimal production capacity, increases in its degree of utilization bring about decreases in the total average cost of production. Nicholas Georgescu-Roegen (1966) and Nicholas Kaldor (1972) both argue that these economies should not be treated as economies of scale.

  1. ^ "Economies of Scale: What Are They and How Are They Used?". Investopedia. Retrieved 12 April 2024.
  2. ^ O'Sullivan, Arthur; Sheffrin, Steven M. (2003). Economics: Principles in Action. Upper Saddle River, NJ: Pearson Prentice Hall. pp. 157. ISBN 978-0-13-063085-8. Retrieved 20 February 2024 – via Internet Archive.
  3. ^ Landes, David. S. (1969). The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present. Cambridge, New York: Press Syndicate of the University of Cambridge. ISBN 978-0-521-09418-4. Landes describes the problem of new steel mills in late 19th century Britain being too large for the market and unable to economically produce short production runs of specialty grades. The old mills had another advantage in that they were fully amortized.{{cite book}}: CS1 maint: postscript (link)


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne