Elliptic orbit

Animation of Orbit by eccentricity
  0.0 ·   0.2 ·   0.4 ·   0.6 ·   0.8
Two bodies with similar mass orbiting around a common barycenter with elliptic orbits.
Two bodies with unequal mass orbiting around a common barycenter with circular orbits.
Two bodies with highly unequal mass orbiting a common barycenter with circular orbits.
An elliptical orbit is depicted in the top-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy decreases as the orbiting body's speed decreases and distance increases according to Kepler's laws.

In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit). In a wider sense, it is a Kepler orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1.

In a gravitational two-body problem with negative energy, both bodies follow similar elliptic orbits with the same orbital period around their common barycenter. Also the relative position of one body with respect to the other follows an elliptic orbit.

Examples of elliptic orbits include Hohmann transfer orbits, Molniya orbits, and tundra orbits.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne