Relative dating

The Permian through Jurassic stratigraphy of the Colorado Plateau area of southeastern Utah is a great example of Original Horizontality and the Law of Superposition, two important ideas used in relative dating. These strata make up much of the famous prominent rock formations in widely spaced protected areas such as Capitol Reef National Park and Canyonlands National Park. From top to bottom: Rounded tan domes of the Navajo Sandstone, layered red Kayenta Formation, cliff-forming, vertically jointed, red Wingate Sandstone, slope-forming, purplish Chinle Formation, layered, lighter-red Moenkopi Formation, and white, layered Cutler Formation sandstone. Photo from Glen Canyon National Recreation Area, Utah.

Relative dating is the science of determining the relative order of past events (i.e., the age of an object in comparison to another), without necessarily determining their absolute age (i.e., estimated age). In geology, rock or superficial deposits, fossils and lithologies can be used to correlate one stratigraphic column with another. Prior to the discovery of radiometric dating in the early 20th century, which provided a means of absolute dating, archaeologists and geologists used relative dating to determine ages of materials. Though relative dating can only determine the sequential order in which a series of events occurred, not when they occurred, it remains a useful technique. Relative dating by biostratigraphy is the preferred method in paleontology and is, in some respects, more accurate.[1] The Law of Superposition, which states that older layers will be deeper in a site than more recent layers, was the summary outcome of 'relative dating' as observed in geology from the 17th century to the early 20th century.

  1. ^ Stanley, Steven M. (1999). Earth System History. New York: W.H. Freeman and Company. pp. 167–169. ISBN 0-7167-2882-6.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne