Enzyme

(en) Représentation d'une α-glucosidase (PDB 1OBB[1]) avec à sa droite le substrat — ici, le maltose — au-dessus des produits de réaction — deux molécules de glucose.
Diagramme d'une réaction catalysée montrant l'énergie E requise à différentes étapes suivant l'axe du temps t. Les substrats A et B en conditions normales requièrent une quantité d'énergie E1 pour atteindre l'état de transition AB, à la suite duquel le produit de réaction AB peut se former. L'enzyme E crée un microenvironnement dans lequel A et B peuvent atteindre l'état de transition AEB moyennant une énergie d'activation E2 plus faible. Ceci accroît considérablement la vitesse de réaction.
Action d'une enzyme sur l'énergie d'activation d'une réaction chimique.

Une enzyme est une protéine dotée de propriétés catalytiques. Presque toutes les biomolécules capables de catalyser des réactions chimiques dans les cellules sont des enzymes ; certaines biomolécules catalytiques sont cependant constituées d'ARN et sont donc distinctes des enzymes : ce sont les ribozymes.

Une enzyme agit en abaissant l'énergie d'activation d'une réaction chimique, ce qui accroît la vitesse de réaction. L'enzyme n'est pas modifiée au cours de la réaction. Les molécules initiales sont les substrats de l'enzyme, et les molécules formées à partir de ces substrats sont les produits de la réaction. Presque tous les processus métaboliques de la cellule ont besoin d'enzymes pour se dérouler à une vitesse suffisante pour maintenir la vie. Les enzymes catalysent plus de 5 000 réactions chimiques différentes[2]. L'ensemble des enzymes d'une cellule détermine les voies métaboliques possibles dans cette cellule. L'étude des enzymes est appelée enzymologie.

Les enzymes permettent à des réactions de se produire des millions de fois plus vite qu'en leur absence. Un exemple extrême est l'orotidine-5'-phosphate décarboxylase, qui catalyse en quelques millisecondes une réaction qui prendrait, en son absence, plusieurs millions d'années[3],[4]. Comme tous les catalyseurs, les enzymes ne sont pas modifiées au cours des réactions qu'elles catalysent, et ne modifient pas l'équilibre chimique entre substrats et produits. Les enzymes diffèrent en revanche de la plupart des autres types de catalyseurs par leur très grande spécificité. Cette spécificité découle de leur structure tridimensionnelle. De plus, l'activité d'une enzyme est modulée par diverses autres molécules : un inhibiteur enzymatique est une molécule qui ralentit l'activité d'une enzyme, tandis qu'un activateur de cette enzyme l'accélère ; de nombreux médicaments et poisons sont des inhibiteurs enzymatiques. Par ailleurs, l'activité d'une enzyme décroît rapidement en dehors de sa température et de son pH optimums. De plus, une enzyme a la caractéristique d'être réutilisable.

  1. (en) Jacinta A. Lodge, Timm Maier, Wolfgang Liebl, Volker Hoffmann et Norbert Sträter, « Crystal Structure of Thermotoga maritima α-Glucosidase AglA Defines a New Clan of NAD+-dependent Glycosidases », Journal of Biological Chemistry, vol. 278, no 21,‎ , p. 19151-19158 (PMID 12588867, DOI 10.1074/jbc.M211626200, lire en ligne)
  2. (en) Ida Schomburg, Antje Chang, Sandra Placzek, Carola Söhngen, Michael Rother, Maren Lang, Cornelia Munaretto, Susanne Ulas, Michael Stelzer, Andreas Grote, Maurice Scheer et Dietmar Schomburg, « BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA », Nucleic Acids Research, vol. 41, no D1,‎ , D764-D772 (PMID 23203881, DOI 10.1093/nar/gks1049, lire en ligne)
  3. (en) A. Radzicka et R. Wolfenden, « A proficient enzyme », Science, vol. 267, no 5194,‎ , p. 90-93 (PMID 7809611, DOI 10.1126/science.7809611, lire en ligne)
  4. (en) Brian P. Callahan et Brian G. Miller, « OMP decarboxylase—An enigma persists », Bioorganic Chemistry, vol. 35, no 6,‎ , p. 465-469 (PMID 17889251, DOI 10.1016/j.bioorg.2007.07.004, lire en ligne)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne