Gibbs-Sampling

Gibbs-Sampling, auch Gibbs-Stichprobenentnahme, ist ein Markov-Chain-Monte-Carlo-Algorithmus, um eine Folge von Stichproben der gemeinsamen Wahrscheinlichkeitsverteilung zweier oder mehrerer Zufallsvariablen zu erzeugen. Das Ziel ist es dabei, die unbekannte gemeinsame Verteilung zu approximieren. Der Algorithmus ist aufgrund der Ähnlichkeit des Sampling-Verfahrens mit Methoden der statistischen Physik nach dem Physiker Josiah Willard Gibbs benannt. Entwickelt wurde er von Stuart Geman und Donald Geman (siehe Literaturhinweis). Gibbs-Sampling ist ein Spezialfall des Metropolis-Hastings-Algorithmus.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne