Elektromagnetische Welle

Linear polarisierte elektromagnetische Welle im Vakuum. Die monochromatische Welle mit Wellenlänge '"`UNIQ--postMath-00000001-QINU`"' breitet sich in x-Richtung aus, die elektrische Feldstärke '"`UNIQ--postMath-00000002-QINU`"' (in blau) und die magnetische Flussdichte '"`UNIQ--postMath-00000003-QINU`"' (in rot) stehen zueinander und zur Ausbreitungsrichtung im rechten Winkel und bilden in dieser Reihenfolge ein Rechtssystem.
Linear polarisierte elektromagnetische Welle im Vakuum. Die monochromatische Welle mit Wellenlänge '"`UNIQ--postMath-00000001-QINU`"' breitet sich in x-Richtung aus, die elektrische Feldstärke '"`UNIQ--postMath-00000002-QINU`"' (in blau) und die magnetische Flussdichte '"`UNIQ--postMath-00000003-QINU`"' (in rot) stehen zueinander und zur Ausbreitungsrichtung im rechten Winkel und bilden in dieser Reihenfolge ein Rechtssystem.
Linear polarisierte elektromagnetische Welle im Vakuum. Die monochromatische Welle mit Wellenlänge breitet sich in x-Richtung aus, die elektrische Feldstärke (in blau) und die magnetische Flussdichte (in rot) stehen zueinander und zur Ausbreitungsrichtung im rechten Winkel und bilden in dieser Reihenfolge ein Rechtssystem.

Eine elektromagnetische Welle ist eine Welle aus gekoppelten elektrischen und magnetischen Feldern, die sich im Raum ausbreiten. Den damit verbundenen Energietransport bezeichnet man als elektromagnetische Strahlung.[1] Beispiele für elektromagnetische Wellen sind Radiowellen, Mikrowellen, Infrarotstrahlung, Licht, Röntgenstrahlung und Gammastrahlung (Aufzählung nach aufsteigender Frequenz über 20 Größenordnungen hinweg; ab Infrarot bevorzugt man das Wort „Strahlung“.[1]). Die Wechselwirkung elektromagnetischer Wellen mit Materie hängt von ihrer Frequenz ab.

Anders als zum Beispiel Schallwellen benötigen elektromagnetische Wellen kein Medium, um sich fortzupflanzen. Sie können sich daher auch über weiteste Entfernungen im Weltraum ausbreiten. Sie bewegen sich im Vakuum unabhängig von ihrer Frequenz mit Lichtgeschwindigkeit fort. Elektromagnetische Wellen können sich aber auch in Materie ausbreiten (etwa einem Gas oder einer Flüssigkeit), ihre Phasengeschwindigkeit ist dann verringert und hängt vom Brechungsindex ab.

Freie elektromagnetische Wellen im leeren Raum sind Transversalwellen und zeigen daher das Phänomen der Polarisation. Ihre Vektoren des elektrischen und des magnetischen Feldes stehen senkrecht aufeinander und auf der Ausbreitungsrichtung. Bewegliche Ladungsträger beeinflussen die Form der Welle, wobei auch die Transversalität verletzt wird.

  1. a b Was sind elektromagnetische Felder, Bundesamt für Strahlenschutz

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne