Artificial intelligence systems integration

The core idea of artificial intelligence systems integration is making individual software components, such as speech synthesizers, interoperable with other components, such as common sense knowledgebases, in order to create larger, broader and more capable A.I. systems. The main methods that have been proposed for integration are message routing, or communication protocols that the software components use to communicate with each other, often through a middleware blackboard system.

Most artificial intelligence systems involve some sort of integrated technologies, for example, the integration of speech synthesis technologies with that of speech recognition. However, in recent years, there has been an increasing discussion on the importance of systems integration as a field in its own right. Proponents of this approach are researchers such as Marvin Minsky, Aaron Sloman, Deb Roy, Kristinn R. Thórisson and Michael A. Arbib. A reason for the recent attention A.I. integration is attracting is that there have already been created a number of (relatively) simple A.I. systems for specific problem domains (such as computer vision, speech synthesis, etc.), and that integrating what's already available is a more logical approach to broader A.I. than building monolithic systems from scratch.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne