Astrocyte | |
---|---|
Details | |
Precursor | Glioblast |
Location | Brain and spinal cord |
Identifiers | |
Latin | astrocytus |
MeSH | D001253 |
NeuroLex ID | sao1394521419 |
TH | H2.00.06.2.00002, H2.00.06.2.01008 |
FMA | 54537 |
Anatomical terms of microanatomy |
Astrocytes (from Ancient Greek ἄστρον, ástron, "star" and κύτος, kútos, "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of endothelial cells that form the blood–brain barrier,[1] provision of nutrients to the nervous tissue, maintenance of extracellular ion balance, regulation of cerebral blood flow, and a role in the repair and scarring process of the brain and spinal cord following infection and traumatic injuries.[2] The proportion of astrocytes in the brain is not well defined; depending on the counting technique used, studies have found that the astrocyte proportion varies by region and ranges from 20% to around 40% of all glia.[3] Another study reports that astrocytes are the most numerous cell type in the brain.[2] Astrocytes are the major source of cholesterol in the central nervous system.[4] Apolipoprotein E transports cholesterol from astrocytes to neurons and other glial cells, regulating cell signaling in the brain.[4] Astrocytes in humans are more than twenty times larger than in rodent brains, and make contact with more than ten times the number of synapses.[5]
Research since the mid-1990s has shown that astrocytes propagate intercellular Ca2+ waves over long distances in response to stimulation, and, similar to neurons, release transmitters (called gliotransmitters) in a Ca2+-dependent manner.[6] Data suggest that astrocytes also signal to neurons through Ca2+-dependent release of glutamate.[7] Such discoveries have made astrocytes an important area of research within the field of neuroscience.
Astrocytes are the dominant glial cell in the brain and numerous studies indicate they are central to the intracerebral immune response to T. gondii in the brain.
Sloan
was invoked but never defined (see the help page).