Bioplastic

Biodegradable plastic utensils
Flower wrapping made of PLA-blend bio-flex

Bioplastics are plastic materials produced from renewable biomass sources. Historically, bioplastics made from natural materials like shellac or cellulose had been the first plastics. Since the end of the 19th century they have been increasingly superseded by fossil-fuel plastics derived from petroleum or natural gas (fossilized biomass is not considered to be renewable in reasonable short time). Today, in the context of bioeconomy and circular economy, bioplastics are gaining interest again. Conventional petro-based polymers are increasingly blended with bioplastics to manufacture "bio-attributed" or "mass-balanced" plastic products - so the difference between bio- and other plastics might be difficult to define.[1]

Bioplastics can be produced by:

One advantage of bioplastics is their independence from fossil fuel as a raw material, which is a finite and globally unevenly distributed resource linked to petroleum politics and environmental impacts. Bioplastics can utilize previously unused waste materials (e.g., straw, woodchips, sawdust, and food waste). Life cycle analysis studies show that some bioplastics can be made with a lower carbon footprint than their fossil counterparts, for example when biomass is used as raw material and also for energy production. However, other bioplastics' processes are less efficient and result in a higher carbon footprint than fossil plastics.[4][5][6][7]

Whether any kind of plastic is degradable or non-degradable (durable) depends on its molecular structure, not on whether or not the biomass constituting the raw material is fossilized. Both durable bioplastics, such as Bio-PET or biopolyethylene (bio-based analogues of fossil-based polyethylene terephthalate and polyethylene), and degradable bioplastics, such as polylactic acid, polybutylene succinate, or polyhydroxyalkanoates,[8] exist.[9][10] Bioplastics must be recycled similar to fossil-based plastics to avoid plastic pollution; "drop-in" bioplastics (such as biopolyethylene) fit into existing recycling streams. On the other hand, recycling biodegradable bioplastics in the current recycling streams poses additional challenges, as it may raise the cost of sorting and decrease the yield and the quality of the recyclate. However, biodegradation is not the only acceptable end-of-life disposal pathway for biodegradable bioplastics, and mechanical and chemical recycling are often the preferred choice from the environmental point of view.[11]

Biodegradability may offer an end-of-life pathway in certain applications, such as agricultural mulch, but the concept of biodegradation is not as straightforward as many believe. Susceptibility to biodegradation is highly dependent on the chemical backbone structure of the polymer, and different bioplastics have different structures, thus it cannot be assumed that bioplastic in the environment will readily disintegrate. Conversely, biodegradable plastics can also be synthesized from fossil fuels.[4][12]

As of 2018, bioplastics represented approximately 2% of the global plastics output (>380 million tons).[13] In 2022, the commercially most important types of bioplastics were PLA and products based on starch.[14] With continued research on bioplastics, investment in bioplastic companies and rising scrutiny on fossil-based plastics, bioplastics are becoming more dominant in some markets, while the output of fossil plastics also steadily increases.

  1. ^ "Bioplastics Market Report: Industry Analysis, Forecast 2032". Ceresana Market Research. Retrieved 2024-10-28.
  2. ^ Marichelvam, M. K.; Jawaid, Mohammad; Asim, Mohammad (2019). "Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials". Fibers. 7 (4): 32. doi:10.3390/fib7040032.
  3. ^ Shah, Manali; Rajhans, Sanjukta; Pandya, Himanshu A.; Mankad, Archana U.; Shah, Manali; Rajhans, Sanjukta; Pandya, Himanshu A.; Mankad, Archana U. (2021). "Bioplastic for future: A review then and now". World Journal of Advanced Research and Reviews. 9 (2): 056–067. doi:10.30574/wjarr.2021.9.2.0054.
  4. ^ a b Rosenboom, Jan-Georg; Langer, Robert; Traverso, Giovanni (2022-02-20). "Bioplastics for a circular economy". Nature Reviews Materials. 7 (2): 117–137. Bibcode:2022NatRM...7..117R. doi:10.1038/s41578-021-00407-8. ISSN 2058-8437. PMC 8771173. PMID 35075395.
  5. ^ Di Bartolo, Alberto; Infurna, Giulia; Dintcheva, Nadka Tzankova (2021). "A Review of Bioplastics and Their Adoption in the Circular Economy". Polymers. 13 (8): 1229. doi:10.3390/polym13081229. hdl:10447/538077. PMC 8069747. PMID 33920269.
  6. ^ Walker, S.; Rothman, R. (2020-07-10). "Life cycle assessment of bio-based and fossil-based plastic: A review". Journal of Cleaner Production. 261: 121158. Bibcode:2020JCPro.26121158W. doi:10.1016/j.jclepro.2020.121158. hdl:10871/121758. ISSN 0959-6526. S2CID 216414551.
  7. ^ Pellis, Alessandro; Malinconico, Mario; Guarneri, Alice; Gardossi, Lucia (2021-01-25). "Renewable polymers and plastics: Performance beyond the green". New Biotechnology. 60: 146–158. doi:10.1016/j.nbt.2020.10.003. ISSN 1871-6784. PMID 33068793. S2CID 224321496.
  8. ^ Thomas, Anjaly P.; Kasa, Vara Prasad; Dubey, Brajesh Kumar; Sen, Ramkrishna; Sarmah, Ajit K. (2023). "Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock". Science of the Total Environment. 904: 167243. Bibcode:2023ScTEn.90467243T. doi:10.1016/j.scitotenv.2023.167243. PMID 37741416.
  9. ^ Lackner, Maximilian (2015). "Bioplastics". Kirk-Othmer Encyclopedia of Chemical Technology: 1–41. doi:10.1002/0471238961.koe00006. ISBN 978-0-471-48494-3.
  10. ^ Piemonte, Vincenzo (2013). "Inside the Bioplastics World: An Alternative to Petroleum-based Plastics". Sustainable Development in Chemical Engineering Innovative Technologies (1 ed.). Wiley. pp. 181–198. doi:10.1002/9781118629703.ch8. ISBN 9781119953524.
  11. ^ Fredi, Giulia; Dorigato, Andrea (2021-07-01). "Recycling of bioplastic waste: A review". Advanced Industrial and Engineering Polymer Research. 4 (3): 159–177. doi:10.1016/j.aiepr.2021.06.006. hdl:11572/336675. S2CID 237852939.
  12. ^ "Bioplastics (PLA) - World Centric". worldcentric.org. Archived from the original on 2019-03-09. Retrieved 2018-07-15.
  13. ^ Chinthapalli, Raj; Skoczinski, Pia; Carus, Michael; Baltus, Wolfgang; de Guzman, Doris; Käb, Harald; Raschka, Achim; Ravenstijn, Jan (2019-08-01). "Biobased Building Blocks and Polymers—Global Capacities, Production and Trends, 2018–2023". Industrial Biotechnology. 15 (4): 237–241. doi:10.1089/ind.2019.29179.rch. ISSN 1550-9087. S2CID 202017074.
  14. ^ "Bioplastics Market Report: Industry Analysis, Forecast 2032". Ceresana Market Research. Retrieved 2024-10-28.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne