| |||
Names | |||
---|---|---|---|
IUPAC name
Carbon dioxide
| |||
Other names
| |||
Identifiers | |||
3D model (JSmol)
|
|||
1900390 | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.004.271 | ||
EC Number |
| ||
E number | E290 (preservatives) | ||
989 | |||
KEGG | |||
MeSH | Carbon+dioxide | ||
PubChem CID
|
|||
RTECS number |
| ||
UNII | |||
UN number | 1013 (gas), 1845 (solid) | ||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
CO2 | |||
Molar mass | 44.009 g·mol−1 | ||
Appearance | Colorless gas | ||
Odor |
| ||
Density |
| ||
Critical point (T, P) | 304.128(15) K[2] (30.978(15) °C), 7.3773(30) MPa[2] (72.808(30) atm) | ||
194.6855(30) K (−78.4645(30) °C) at 1 atm (0.101325 MPa) | |||
1.45 g/L at 25 °C (77 °F), 100 kPa (0.99 atm) | |||
Vapor pressure | 5.7292(30) MPa, 56.54(30) atm (20 °C (293.15 K)) | ||
Acidity (pKa) | Carbonic acid: pKa1 = 3.6 pKa1(apparent) = 6.35 pKa2 = 10.33 | ||
−20.5·10−6 cm3/mol | |||
Thermal conductivity | 0.01662 W·m−1·K−1 (300 K (27 °C; 80 °F))[3] | ||
Refractive index (nD)
|
1.00045 | ||
Viscosity |
| ||
0 D | |||
Structure | |||
Trigonal | |||
Linear | |||
Thermochemistry | |||
Heat capacity (C)
|
37.135 J/(K·mol) | ||
Std molar
entropy (S⦵298) |
214 J·mol−1·K−1 | ||
Std enthalpy of
formation (ΔfH⦵298) |
−393.5 kJ·mol−1 | ||
Pharmacology | |||
V03AN02 (WHO) | |||
Hazards | |||
NFPA 704 (fire diamond) | |||
Lethal dose or concentration (LD, LC): | |||
LCLo (lowest published)
|
90,000 ppm (162,000 mg/m3) (human, 5 min)[6] | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible)
|
TWA 5000 ppm (9000 mg/m3)[5] | ||
REL (Recommended)
|
TWA 5000 ppm (9000 mg/m3), ST 30,000 ppm (54,000 mg/m3)[5] | ||
IDLH (Immediate danger)
|
40,000 ppm (72,000 mg/m3)[5] | ||
Safety data sheet (SDS) | Sigma-Aldrich | ||
Related compounds | |||
Other anions
|
|||
Other cations
|
|||
See Oxocarbon | |||
Related compounds
|
|||
Supplementary data page | |||
Carbon dioxide (data page) | |||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Carbon dioxide is a chemical compound with the chemical formula CO2. It is made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature and at normally-encountered concentrations it is odorless. As the source of carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater.
It is a trace gas in Earth's atmosphere at 421 parts per million (ppm)[a], or about 0.042% (as of May 2022) having risen from pre-industrial levels of 280 ppm or about 0.028%.[10][11] Burning fossil fuels is the main cause of these increased CO2 concentrations, which are the primary cause of climate change.[12]
Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian was regulated by organisms and geological features. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product.[13] In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration.[14] CO2 is released from organic materials when they decay or combust, such as in forest fires. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate (HCO−3), which causes ocean acidification as atmospheric CO2 levels increase.[15]
Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks.[16] These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere.[17] CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas.
Nearly all CO2 produced by humans goes into the atmosphere. Less than 1% of CO2 produced annually is put to commercial use, mostly in the fertilizer industry and in the oil and gas industry for enhanced oil recovery. Other commercial applications include food and beverage production, metal fabrication, cooling, fire suppression and stimulating plant growth in greenhouses. [18]: 3
AirProductsMSDS
was invoked but never defined (see the help page).
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).