Climate resilience

Climate resilience is a concept to describe how well people or ecosystems are prepared to bounce back from certain climate hazard events. The formal definition of the term is the "capacity of social, economic and ecosystems to cope with a hazardous event or trend or disturbance".[1]: 7  For example, climate resilience can be the ability to recover from climate-related shocks such as floods and droughts.[2] Different actions can increase climate resilience of communities and ecosystems to help them cope. They can help to keep systems working in the face of external forces. For example, building a seawall to protect a coastal community from flooding might help maintain existing ways of life there.

To increase climate resilience means one has to reduce the climate vulnerability of people, communities and countries. This can be done in many different ways. They can be technological and infrastructural changes (including buildings and roads) or policy (e.g. laws and regulation). There are also social and community approaches, as well as nature-based ones, for example by restoring ecosystems like forests to act as natural barriers against climate impacts. These types of approaches are also known as climate change adaptation. Climate resilience is a broader concept that includes adaptation but also emphasizes a system-wide approach to managing risks. The changes have to be implemented at all scales of society, from local community action all the way to global treaties. It also emphasizes the need to transform systems and societies and to better cope with a changed climate.

To make societies more resilient, climate policies and plans should be shaped by choices that support sustainability. This kind of development has come to be known as climate resilient development. It has become a new paradigm for sustainable development.[2] It influences theory and practice across all sectors globally.[2] Two approaches that fall under this kind of development are climate resilient infrastructure and climate-smart agriculture. Another example are climate-resilient water services. These are services that provide access to high quality drinking water during all seasons and even during extreme weather events.[3] On every continent, governments are now adopting policies for climate resilient economies. International frameworks such as the Paris Agreement and the Sustainable Development Goals are drivers for such initiatives.[2]

Tools exist to measure climate resilience. They allow for comparisons of different groups of people through standardized metrics. Objective tools use fixed and transparent definitions of resilience. Two examples for objective tools are the Resilience Index Measurement and Analysis (RIMA) and the Livelihoods Change Over Time (LCOT).[4][5] Subjective approaches on the other hand use people's feelings of what constitutes resilience. People then make their own assessment of their resilience.[6]

  1. ^ IPCC, 2022: Summary for Policymakers [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3–33, doi:10.1017/9781009325844.001.
  2. ^ a b c d Grasham, Catherine Fallon; Calow, Roger; Casey, Vincent; Charles, Katrina J.; de Wit, Sara; Dyer, Ellen; Fullwood-Thomas, Jess; Hirons, Mark; Hope, Robert; Hoque, Sonia Ferdous; Jepson, Wendy; Korzenevica, Marina; Murphy, Rebecca; Plastow, John; Ross, Ian (2021). "Engaging with the politics of climate resilience towards clean water and sanitation for all". npj Clean Water. 4 (1): 42. Bibcode:2021npjCW...4...42G. doi:10.1038/s41545-021-00133-2. ISSN 2059-7037. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  3. ^ Charles, Katrina J.; Howard, Guy; Villalobos Prats, Elena; Gruber, Joshua; Alam, Sadekul; Alamgir, A.S.M.; Baidya, Manish; Flora, Meerjady Sabrina; Haque, Farhana; Hassan, S.M. Quamrul; Islam, Saiful (2022). "Infrastructure alone cannot ensure resilience to weather events in drinking water supplies". Science of the Total Environment. 813: 151876. Bibcode:2022ScTEn.81351876C. doi:10.1016/j.scitotenv.2021.151876. hdl:1983/92cc5791-168b-457a-93c7-458890f1bf26. PMID 34826465.
  4. ^ Cite error: The named reference FAO-2016 was invoked but never defined (see the help page).
  5. ^ FSIN (2014). "A Common Analytical Model for Resilience Measurement" (PDF). Food Security Information Network.
  6. ^ Cite error: The named reference Jones-2019b was invoked but never defined (see the help page).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne