Double layer (surface science)

Schematic of the electrical double layer (EDL) in aqueous solution at the interface with a negatively-charged surface of a mineral solid. Blue + sphere: cations; red – spheres: anions. The number of cations is larger in the EDL close to the negatively-charged surface in order to neutralize these negative charges and to maintain electroneutrality. The drawing does not explicitly show the negative charges of the surface.

In surface science, a double layer (DL, also called an electrical double layer, EDL) is a structure that appears on the surface of an object when it is exposed to a fluid. The object might be a solid particle, a gas bubble, a liquid droplet, or a porous body. The DL refers to two parallel layers of charge surrounding the object. The first layer, the surface charge (either positive or negative), consists of ions which are adsorbed onto the object due to chemical interactions. The second layer is composed of ions attracted to the surface charge via the Coulomb force, electrically screening the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of electric attraction and thermal motion rather than being firmly anchored. It is thus called the "diffuse layer".

Interfacial DLs are most apparent in systems with a large surface-area-to-volume ratio, such as a colloid or porous bodies with particles or pores (respectively) on the scale of micrometres to nanometres. However, DLs are important to other phenomena, such as the electrochemical behaviour of electrodes.

DLs play a fundamental role in many everyday substances. For instance, homogenized milk exists only because fat droplets are covered with a DL that prevents their coagulation into butter. DLs exist in practically all heterogeneous fluid-based systems, such as blood, paint, ink and ceramic and cement slurry.

The DL is closely related to electrokinetic phenomena and electroacoustic phenomena.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne