Electrochemical RAM

Electrochemical Random-Access Memory (ECRAM) is a type of non-volatile memory (NVM) with multiple levels per cell (MLC) designed for deep learning analog acceleration.[1][2][3] An ECRAM cell is a three-terminal device composed of a conductive channel, an insulating electrolyte, an ionic reservoir, and metal contacts. The resistance of the channel is modulated by ionic exchange at the interface between the channel and the electrolyte upon application of an electric field. The charge-transfer process allows both for state retention in the absence of applied power, and for programming of multiple distinct levels, both differentiating ECRAM operation from that of a field-effect transistor (FET). The write operation is deterministic and can result in symmetrical potentiation and depression, making ECRAM arrays attractive for acting as artificial synaptic weights in physical implementations of artificial neural networks (ANN). The technological challenges include open circuit potential (OCP) and semiconductor foundry compatibility associated with energy materials. Universities, government laboratories, and corporate research teams have contributed to the development of ECRAM for analog computing. Notably, Sandia National Laboratories designed a lithium-based cell inspired by solid-state battery materials,[4] Stanford University built an organic proton-based cell,[5] and International Business Machines (IBM) demonstrated in-memory selector-free parallel programming for a logistic regression task in an array of metal-oxide ECRAM designed for insertion in the back end of line (BEOL).[6] In 2022, researchers at Massachusetts Institute of Technology built an inorganic, CMOS-compatible protonic technology that achieved near-ideal modulation characteristics using nanosecond fast pulses [7]

  1. ^ Shi, J.; Ha, S. D.; Zhou, Y.; Schoofs, F.; Ramanathan, S. (2013). "A correlated nickelate synaptic transistor". Nature Communications. 4: 2676. Bibcode:2013NatCo...4.2676S. doi:10.1038/ncomms3676. PMID 24177330.
  2. ^ Tang, Jianshi; Bishop, Douglas; Kim, Seyoung; Copel, Matt; Gokmen, Tayfun; Todorov, Teodor; Shin, SangHoon; Lee, Ko-Tao; Solomon, Paul (2018-12-01). "ECRAM as Scalable Synaptic Cell for High-Speed, Low-Power Neuromorphic Computing". 2018 IEEE International Electron Devices Meeting (IEDM). pp. 13.1.1–4. doi:10.1109/IEDM.2018.8614551. ISBN 978-1-7281-1987-8. S2CID 58674536. Retrieved 2020-07-16.
  3. ^ "Finite element modeling of electrochemical random access memory - iis-projects". iis-projects.ee.ethz.ch. Zürich, Switzerland: ETH Zurich. Retrieved 2020-07-16.
  4. '^ E. J. Fuller et al., Adv. Mater., 29, 1604310 (2017)
  5. ^ Y. van de Burgt et al., Nature Electronics, 1, 386 (2018)
  6. ^ Kim, S. (2019). "Metal-oxide based, CMOS-compatible ECRAM for Deep Learning Accelerator". 2019 IEEE International Electron Devices Meeting (IEDM). pp. 35.7.1–4. doi:10.1109/IEDM19573.2019.8993463. ISBN 978-1-7281-4032-2. S2CID 211211273.
  7. ^ Onen, Murat; Emond, Nicolas; Wang, Baoming; Zhang, Difei; Ross, Frances M.; Li, Ju; Yildiz, Bilge; del Alamo, Jesús A. (29 July 2022). "Nanosecond protonic programmable resistors for analog deep learning". Science. 377 (6605): 539–543. Bibcode:2022Sci...377..539O. doi:10.1126/science.abp8064. ISSN 0036-8075. PMID 35901152. S2CID 251159631.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne