Multivalued function

Multivalued function {1,2,3} → {a,b,c,d}.

In mathematics, a multivalued function,[1] multiple-valued function,[2] many-valued function,[3] or multifunction,[4] is a function that has two or more values in its range for at least one point in its domain.[5] It is a set-valued function with additional properties depending on context; some authors do not distinguish between set-valued functions and multifunctions,[6] but English Wikipedia currently does, having a separate article for each.

A multivalued function of sets f : X → Y is a subset

Write f(x) for the set of those yY with (x,y) ∈ Γf. If f is an ordinary function, it is a multivalued function by taking its graph

They are called single-valued functions to distinguish them.

  1. ^ "Multivalued Function". archive.lib.msu.edu. Retrieved 2024-10-25.
  2. ^ "Multiple Valued Functions | Complex Variables with Applications | Mathematics". MIT OpenCourseWare. Retrieved 2024-10-25.
  3. ^ Al-Rabadi, Anas; Zwick, Martin (2004-01-01). "Modified Reconstructability Analysis for Many-Valued Functions and Relations". Kybernetes. 33 (5/6): 906–920. doi:10.1108/03684920410533967.
  4. ^ Ledyaev, Yuri; Zhu, Qiji (1999-09-01). "Implicit Multifunction Theorems". Set-Valued Analysis Volume. 7 (3): 209–238. doi:10.1023/A:1008775413250.
  5. ^ "Multivalued Function". Wolfram MathWorld. Retrieved 10 February 2024.
  6. ^ Repovš, Dušan (1998). Continuous selections of multivalued mappings. Pavel Vladimirovič. Semenov. Dordrecht: Kluwer Academic. ISBN 0-7923-5277-7. OCLC 39739641.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne