Soil consists of a solid phase of minerals and organic matter (the soil matrix), as well as a porous phase that holds gases (the soil atmosphere) and water (the soil solution).[1][2] Accordingly, soil is a three-state system of solids, liquids, and gases.[3] Soil is a product of several factors: the influence of climate, relief (elevation, orientation, and slope of terrain), organisms, and the soil's parent materials (original minerals) interacting over time.[4] It continually undergoes development by way of numerous physical, chemical and biological processes, which include weathering with associated erosion.[5] Given its complexity and strong internal connectedness, soil ecologists regard soil as an ecosystem.[6]
Most soils have a dry bulk density (density of soil taking into account voids when dry) between 1.1 and 1.6 g/cm3, though the soil particle density is much higher, in the range of 2.6 to 2.7 g/cm3.[7] Little of the soil of planet Earth is older than the Pleistocene and none is older than the Cenozoic,[8] although fossilized soils are preserved from as far back as the Archean.[9]
All of these functions, in their turn, modify the soil and its properties.
Soil science has two basic branches of study: edaphology and pedology. Edaphology studies the influence of soils on living things.[11]Pedology focuses on the formation, description (morphology), and classification of soils in their natural environment.[12] In engineering terms, soil is included in the broader concept of regolith, which also includes other loose material that lies above the bedrock, as can be found on the Moon and other celestial objects.[13]
^Huggett, Richard John (2017). "What is geomorphology?". Fundamentals of geomorphology. Routledge Fundamentals of Physical Geography (4th ed.). London, United Kingdom: Routledge. pp. 3–30. ISBN9781138940659. Retrieved 22 December 2024.