Galio

Zinc ← GalioGermanio
 
 
31
Ga
 
               
               
                                   
                                   
                                                               
                                                               
Tabla completaTabla ampliada
Información general
Nombre, símbolo, número Galio, Ga, 31
Serie química Metales del bloque p
Grupo, período, bloque 13, 4, p
Masa atómica 69,723 u
Configuración electrónica [Ar] 3d10 4s2 4p1
Dureza Mohs 1,5
Electrones por nivel 2, 8, 18, 3 (imagen)
Apariencia Blanco plateado
Propiedades atómicas
Radio medio 130 pm
Electronegatividad 1,81 (escala de Pauling)
Radio atómico (calc) 136 pm (radio de Bohr)
Radio covalente 126 pm
Radio de van der Waals 187 pm
Estado(s) de oxidación 3
Óxido Anfótero
1.ª energía de ionización 578,8 kJ/mol
2.ª energía de ionización 1979,3 kJ/mol
3.ª energía de ionización 2963 kJ/mol
4.ª energía de ionización 6180 kJ/mol
Líneas espectrales
Propiedades físicas
Estado ordinario Sólido
Densidad 5904 kg/m3
Punto de fusión 302,9146 K (30 °C)
Punto de ebullición 2477 K (2204 °C)
Entalpía de vaporización 258,7 kJ/mol
Entalpía de fusión 5,59 kJ/mol
Presión de vapor 9,31 × 10-36 Pa a 302,9 K
Varios
Estructura cristalina Ortorrómbica
Calor específico 370 J/(kg·K)
Conductividad eléctrica 6,78 106 S/m
Conductividad térmica 40,6 W/(m·K)
Velocidad del sonido 2740 m/s a 293,15 K (20 °C)
Isótopos más estables
Artículo principal: Isótopos del galio
iso AN Periodo MD Ed PD
MeV
69Ga60,1%Estable con 38 neutrones
71Ga39,9%Estable con 40 neutrones
Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.

El galio es un elemento químico de la tabla periódica de número atómico 31 y símbolo Ga.[1][2]​ Descubierto por el químico francés Paul Émile Lecoq de Boisbaudran en 1875,[3]​ El galio está en el grupo 13 de la tabla periódica y es similar a los otros metales del grupo como el aluminio, el indio y el talio.

El galio elemental es un metal blando y plateado en temperatura y presión estándar. En su estado líquido, se vuelve blanco plateado. Si se aplica demasiada fuerza, el galio puede fracturarse de manera concoidea. Desde su descubrimiento en 1875, el galio se ha utilizado ampliamente para hacer aleaciones con puntos de fusión bajos. También se utiliza en semiconductores, como dopante en sustratos semiconductores.

El punto de fusión del galio se utiliza como punto de referencia de la temperatura. Las aleaciones de galio se utilizan en los termómetros como alternativa no tóxica y ecológica al mercurio, y pueden soportar temperaturas más altas que éste. Un punto de fusión aún más bajo de −19 grados Celsius (−2,2 °F), muy por debajo del punto de congelación del agua, se afirma para la aleación galinstano (62-95% de galio, 5-22% de indio y 0-16% de estaño en peso), pero ese puede ser el punto de congelación con el efecto del sobreenfriamiento.[4]

El galio no se encuentra como elemento libre en la naturaleza, sino como compuestos de galio(III) en cantidades mínimas en los minerales de zinc (como la esfalerita) y en la bauxita. El galio elemental es un líquido a temperaturas superiores a 29,76 grados Celsius (85,6 °F), y se derrite en las manos de una persona a la temperatura normal del cuerpo humano de 37 grados Celsius (98,6 °F).[4]

El galio se utiliza principalmente en electrónica. El arseniuro de galio, el principal compuesto químico del galio en la electrónica, se utiliza en circuitos de microondas, circuitos de conmutación de alta velocidad y circuitos de infrarrojos. El nitruro de galio semiconductor y el nitruro de galio-indio producen diodos emisores de luz azules y violetas y diodos láseres. El galio también se utiliza en la producción de granate de galio y gadolinio artificial para joyería. El galio está considerado como un elemento tecnológico crítico por la Biblioteca Nacional de Medicina de Estados Unidos y Frontiers Media.[5][6]

El galio no tiene ningún papel natural conocido en la biología. El galio(III) se comporta de manera similar a las sales férricas en los sistemas biológicos y se ha utilizado en algunas aplicaciones médicas, incluyendo productos farmacéuticos y radiofármacos.[7]

  1. Garritz, Andoni (1998). Química. Pearson Educación. p. 856. ISBN 978-9-68444-318-1. 
  2. Parry, Robert W. (1973). Química: fundamentos experimentales. Reverte. p. 703. ISBN 978-8-42917-466-3. 
  3. Scerri, Eric (2020). The Periodic Table: Its Story and Its Significance. Oxford University Press. p. 149. ISBN 978-0-19-091436-3. 
  4. a b Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. New York: Oxford University Press. 538 pag. ISBN 0198503415, ISBN 9780198503415
  5. Cobelo-García, A.; Filella, M.; Croot, P.; Frazzoli, C.; Du Laing, G.; Ospina-Alvarez, N.; Rauch, S.; Salaun, P.; Schäfer, J.; Zimmermann, S. (2015). «Acción TD1407: red sobre elementos críticos de la tecnología (NOTICE)-de los procesos medioambientales a las amenazas para la salud humana». Environmental Science and Pollution Research International 22: 15188-15194. ISSN 0944-1344. PMC 4592495. PMID 26286804. 
  6. Romero-Freire, Ana; Santos- Echeandía, Juan; Neira, Patricia; Cobelo-García, Antonio (2019). «Elementos Críticos Tecnológicos Menos Estudiados (Nb, Ta, Ga, In, Ge, Te) en el medio marino: Review on Their Concentrations in Water and Organisms». Fronteras en Ciencias Marinas (en inglés) 6. ISSN 2296-7745. doi:10.3389/fmars.2019.00532. 
  7. Krebs, Robert E. (1998). The History and Use of Our Earth's Chemical Elements: A Reference Guide. Westport, CT: Greenwood Press. 448pag. ISBN 0313334382, ISBN-13 978-0313334382

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne