Un magma (o gruppoide) è un insieme in cui è definita una singola operazione binaria che a ogni coppia di elementi e di associa l'elemento L'unico assioma soddisfatto dall'operazione in un magma è quello di chiusura:
che potrebbe tra l'altro essere tralasciato nella definizione, una volta stabilito che l'operazione è una funzione del tipo
I magmi costituiscono una struttura algebrica molto semplice e generale che gode di poche proprietà; essa è utile per accomunare in un'unica famiglia le strutture con una singola operazione binaria.
Il termine magma è stato introdotto in matematica da Bourbaki nel volume sulle strutture algebriche insieme alla nozione di legge di composizione interna. Il termine gruppoide è anche utilizzato per definire questa struttura. Si noti tuttavia che il termine gruppoide è più comunemente usato con un secondo significato, per denotare un altro tipo di struttura algebrica e una categoria.