In analisi matematica, una successione o sequenza infinita o stringa infinita può essere definita intuitivamente come un elenco ordinato costituito da un'infinità numerabile di oggetti, detti termini della successione, tra i quali sia possibile distinguere un primo, un secondo, un terzo e in generale un -esimo termine per ogni numero naturale . A differenza di quanto avviene per gli insiemi numerabili, per una successione è rilevante l'ordine in cui gli oggetti si trovano, e uno stesso oggetto può comparire più volte: diversi termini possono coincidere. Tali caratteristiche sono molto simili a quelle che distinguono una -upla ordinata da un insieme costituito da elementi; in effetti una successione può anche essere considerata l'estensione infinita di una -upla ordinata.
Le successioni sono funzioni che abbinano a dei numeri naturali dei numeri reali e possono essere rappresentate dal loro grafico in . Inoltre sono utilizzate nel calcolo infinitesimale, che fa ampio uso del concetto di limite di una successione. Esse hanno un ruolo fondamentale nella definizione dell'insieme dei numeri reali e in tutta l'analisi matematica.