Absolute configuration

Absolute configuration showing the determination of the R and S descriptors

Absolute configuration refers to the spatial arrangement of atoms within a chiral molecular entity (or group) and its resultant stereochemical description.[1] Absolute configuration is typically relevant in organic molecules where carbon is bonded to four different substituents. This type of construction creates two possible enantiomers. Absolute configuration uses a set of rules to describe the relative positions of each bond around the chiral center atom. The most common labeling method uses the descriptors R or S and is based on the Cahn–Ingold–Prelog priority rules. R and S refer to rectus and sinister, Latin for right and left, respectively.

Chiral molecules can differ in their chemical properties, but are identical in their physical properties, which can make distinguishing enantiomers challenging. Absolute configurations for a chiral molecule (in pure form) are most often obtained by X-ray crystallography, although with some important limitations. All enantiomerically pure chiral molecules crystallise in one of the 65 Sohncke groups (chiral space groups). Alternative techniques include optical rotatory dispersion, vibrational circular dichroism, ultraviolet-visible spectroscopy, the use of chiral shift reagents in proton NMR and Coulomb explosion imaging.[2][3]

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "absolute configuration". doi:10.1351/goldbook.A00020
  2. ^ "Snapshots differentiate molecules from their mirror image". www.mpg.de. Retrieved 16 February 2021.
  3. ^ Pitzer, Martin; Kunitski, Maksim; Johnson, Allan S.; Jahnke, Till; Sann, Hendrik; Sturm, Felix; Schmidt, Lothar Ph. H.; Schmidt-Böcking, Horst; Dörner, Reinhard; Stohner, Jürgen; Kiedrowski, Julia; Reggelin, Michael; Marquardt, Sebastian; Schießer, Alexander; Berger, Robert; Schöffler, Markus S. (6 September 2013). "Direct Determination of Absolute Molecular Stereochemistry in Gas Phase by Coulomb Explosion Imaging". Science. 341 (6150): 1096–1100. Bibcode:2013Sci...341.1096P. doi:10.1126/science.1240362. ISSN 0036-8075. PMID 24009390. S2CID 206549826.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne