Proton quark structure.svg
The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.
Composition2 up quarks (u), 1 down quark (d)
InteractionsGravity, electromagnetic, weak, strong
, 1
TheorizedWilliam Prout (1815)
DiscoveredObserved as H+ by Eugen Goldstein (1886). Identified in other nuclei (and named) by Ernest Rutherford (1917–1920).
Mass1.67262192369(51)×10−27 kg[1]
1.007276466621(53) Da[2]
938.27208816(29) MeV/c2[3]
Mean lifetime> 3.6×1029 years[4] (stable)
Electric charge+1 e
Charge radius0.8414(19) fm[5]
Electric dipole moment< 2.1×10−25 e⋅cm[6]
Electric polarizability0.00112(4) fm3
Magnetic moment1.41060679736(60)×10−26 J⋅T−1[7]
1.52103220230(46)×10−3 μB[5]
2.79284734463(82) μN[8]
Magnetic polarizability1.9(5)×10−4 fm3
CondensedI(JP) = 1/2(1/2+)

A proton is a stable subatomic particle, symbol
, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei).

One or more protons are present in the nucleus of every atom. They provide the attractive electrostatic central force that binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol Z). Since each element has a unique number of protons, each element has its own unique atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element.

The word proton is Greek for "first", and this name was given to the hydrogen nucleus by Ernest Rutherford in 1920. In previous years, Rutherford had discovered that the hydrogen nucleus (known to be the lightest nucleus) could be extracted from the nuclei of nitrogen by atomic collisions.[9] Protons were therefore a candidate to be a fundamental or elementary particle, and hence a building block of nitrogen and all other heavier atomic nuclei.

Although protons were originally considered to be elementary particles, in the modern Standard Model of particle physics, protons are now known to be composite particles, containing three valence quarks, and together with neutrons are now classified as hadrons. Protons are composed of two up quarks of charge +2/3e and one down quark of charge −1/3e. The rest masses of quarks contribute only about 1% of a proton's mass.[10] The remainder of a proton's mass is due to quantum chromodynamics binding energy, which includes the kinetic energy of the quarks and the energy of the gluon fields that bind the quarks together. Because protons are not fundamental particles, they possess a measurable size; the root mean square charge radius of a proton is about 0.84–0.87 fm (1 fm = 10−15 m).[11][12] In 2019, two different studies, using different techniques, found this radius to be 0.833 fm, with an uncertainty of ±0.010 fm.[13][14]

Free protons occur occasionally on Earth: thunderstorms can produce protons with energies of up to several tens of MeV.[15][16] At sufficiently low temperatures and kinetic energies, free protons will bind to electrons. However, the character of such bound protons does not change, and they remain protons. A fast proton moving through matter will slow by interactions with electrons and nuclei, until it is captured by the electron cloud of an atom. The result is a protonated atom, which is a chemical compound of hydrogen. In a vacuum, when free electrons are present, a sufficiently slow proton may pick up a single free electron, becoming a neutral hydrogen atom, which is chemically a free radical. Such "free hydrogen atoms" tend to react chemically with many other types of atoms at sufficiently low energies. When free hydrogen atoms react with each other, they form neutral hydrogen molecules (H2), which are the most common molecular component of molecular clouds in interstellar space.

Free protons are routinely used for accelerators for proton therapy or various particle physics experiments, with the most powerful example being the Large Hadron Collider.

  1. ^ "2018 CODATA Value: proton mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
  2. ^ "2018 CODATA Value: proton mass in u". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2022-09-11.
  3. ^ "2018 CODATA Value: proton mass energy equivalent in MeV". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2022-09-11.
  4. ^ The SNO+ Collaboration; Anderson, M.; Andringa, S.; Arushanova, E.; Asahi, S.; Askins, M.; Auty, D. J.; Back, A. R.; Barnard, Z.; Barros, N.; Bartlett, D. (2019-02-20). "Search for invisible modes of nucleon decay in water with the SNO+ detector". Physical Review D. 99 (3): 032008. arXiv:1812.05552. Bibcode:2019PhRvD..99c2008A. doi:10.1103/PhysRevD.99.032008. S2CID 96457175.
  5. ^ a b Cite error: The named reference CODATA2018 was invoked but never defined (see the help page).
  6. ^ Sahoo, B. K. (2017-01-17). "Improved limits on the hadronic and semihadronic $CP$ violating parameters and role of a dark force carrier in the electric dipole moment of $^{199}\mathrm{Hg}$". Physical Review D. 95 (1): 013002. arXiv:1612.09371. doi:10.1103/PhysRevD.95.013002. S2CID 119344894.
  7. ^ "2018 CODATA Value: proton magnetic moment". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2022-09-17.
  8. ^ "2018 CODATA Value: proton magnetic moment to nuclear magneton ratio". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2022-09-17.
  9. ^ Cite error: The named reference Britannica was invoked but never defined (see the help page).
  10. ^ Cite error: The named reference Mass was invoked but never defined (see the help page).
  11. ^ Cite error: The named reference PSI was invoked but never defined (see the help page).
  12. ^ Cite error: The named reference Antognini2013 was invoked but never defined (see the help page).
  13. ^ Bezginov, N.; Valdez, T.; Horbatsch, M.; Marsman, A.; Vutha, A. C.; Hessels, E. A. (2019-09-06). "A measurement of the atomic hydrogen Lamb shift and the proton charge radius". Science. 365 (6457): 1007–1012. Bibcode:2019Sci...365.1007B. doi:10.1126/science.aau7807. ISSN 0036-8075. PMID 31488684. S2CID 201845158.
  14. ^ Xiong, W.; Gasparian, A.; Gao, H.; Dutta, D.; Khandaker, M.; Liyanage, N.; Pasyuk, E.; Peng, C.; Bai, X.; Ye, L.; Gnanvo, K. (November 2019). "A small proton charge radius from an electron–proton scattering experiment". Nature. 575 (7781): 147–150. Bibcode:2019Natur.575..147X. doi:10.1038/s41586-019-1721-2. ISSN 1476-4687. OSTI 1575200. PMID 31695211. S2CID 207831686.
  15. ^ Cite error: The named reference Kohn2015 was invoked but never defined (see the help page).
  16. ^ Cite error: The named reference Kohn2017 was invoked but never defined (see the help page).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne